Introduction

Bimonthly, started in 1957
Administrator
Shanxi Provincial Education Department
Sponsor
Taiyuan University of Technology
Publisher
Ed. Office of Journal of TYUT
Editor-in-Chief
SUN Hongbin
ISSN: 1007-9432
CN: 14-1220/N
location: home > paper > 
References:
  • Browse HTML PDFDownload   size: 4.99MB   viewed:131   download:509
  • Preparation of Ba(Mg1/3Ta2/3)O3 Suspension and the Coating Microstructure Based on Suspension Plasma Spraying
    DOI:
     10.16355/j.tyut.1007-9432.20230616
    Received:
     
    Accepted:
     
    abstract:
    Purposes The strain tolerance of Ba(Mg1/3Ta2/3)O3 (BMT) thermal barrier coating prepared by conventional atmospheric plasma spraying is low. Methods With suspension plasma spraying (SPS), BMT suspensions with different compositions are prepared by mechanical ball grinding with ethanol as the dispersion medium and polyacrylic acid (PAA), polyethyleneimine (PEI), and polyethylene glycol (PEG) as dispersants. The dispersion behavior of BMT suspension was studied through gravity sedimentation observation method, UV-Vis spectrophotometry, and Zeta potentiometry. The effects of dispersant type and content on the stability of BMT suspension were analyzed. The BMT coating was deposited by SPS, and the phase structure, surface morphology, and cross-section microstructure of the BMT coating were characterized and analyzed. Findings The results show that the adsorption of the dispersant PEI on the surface of the BMT particles improves their Zeta potential, enhances the repulsive force between particles, and provides a steric hindrance, which results the better dispersion of BMT suspension with PEI dispersant than that with PAA and PEG. In addition, the BMT suspension with PEI has a low viscosity (1.5-2 mPa·s), making it appropriate for SPS. The coating prepared by SPS essentially preserves the BMT phase structure, and shows a clear columnar-crystal microstructure. With the increases of the solid content in the suspension, the deposition efficiency of the BMT coating increase, and the volume of columnar crystals formed becomes larger, which conforms to the microstructural characteristics of high strain tolerance coatings.
    Keywords:
     Ba(Mg1/3Ta2/3)O3; suspension plasma spraying; dispersant; stability; microstructure;

    Website Copyright © Editorial Office of Journal of Taiyuan University of Technology

    E-mail:tyutxb@tyut.edu.cn